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Toward Robust Graph Semi-Supervised Learning
Against Extreme Data Scarcity
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Abstract— The success of graph neural networks (GNNs) in
graph-based web mining highly relies on abundant human-
annotated data, which is laborious to obtain in practice. When
only a few labeled nodes are available, how to improve their
robustness is key to achieving replicable and sustainable graph
semi-supervised learning. Though self-training is powerful for
semi-supervised learning, its application on graph-structured
data may fail because 1) larger receptive fields are not leveraged
to capture long-range node interactions, which exacerbates the
difficulty of propagating feature-label patterns from labeled
nodes to unlabeled nodes and 2) limited labeled data makes
it challenging to learn well-separated decision boundaries for
different node classes without explicitly capturing the underlying
semantic structure. To address the challenges of capturing
informative structural and semantic knowledge, we propose a
new graph data augmentation framework, augmented graph self-
training (AGST), which is built with two new (i.e., structural
and semantic) augmentation modules on top of a decoupled
GST backbone. In this work, we investigate whether this novel
framework can learn a robust graph predictive model under
the low-data context. We conduct comprehensive evaluations on
semi-supervised node classification under different scenarios of
limited labeled-node data. The experimental results demonstrate
the unique contributions of the novel data augmentation frame-
work for node classification with few labeled data.

Index Terms— Data scarcity, graph neural networks (GNNs),
robustness, self-training.

I. INTRODUCTION

WITH the rapid development of the Worldwide Web,
in recent years, we have witnessed the growth in

our ability to generate and gather data on numerous online
and offline platforms. Graphs, where entities are denoted
as nodes and the relations connecting them are denoted as
edges, have become a common language for modeling a
plethora of structured and relational systems on the web,
ranging from social networks [1] to knowledge graphs [2],
to e-commerce user–item interaction graphs [3]. To ingest
the valuable information encoded in graph-structured data,
graph learning algorithms have been proposed in the research
community and made a huge success in different domains.
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Recently, graph neural networks (GNNs), a generalized form
of neural networks for graph-structured data, have become the
prevailing paradigm due to their effectiveness and scalabil-
ity [4], [5], [6].

As a typical graph-related learning task, node classification
has received continuous endeavors in the research commu-
nity [7]. Existing GNNs developed for node classification
usually focus on the canonical semi-supervised setting where
relatively abundant gold-labeled nodes are provided [7]. While
this setting is often impractical since data labeling is extremely
labor intensive, especially when considering the heterogeneity
of graph-structured data [8], [9]. To overcome the data scarcity
issue, self-training or pseudo-labeling [10] has been explored
to combine with GNNs and proven to be effective for solving
semi-supervised node classification with fewer labels [11],
[12], [13].

Existing GST methods, however, simply combine the idea of
self-training with GNNs, which can be ineffective in handling
graph data with few labeled nodes, or in exploiting numerous
unlabeled nodes due to two limitations.

1) Structural Bottleneck: Given a few labeled nodes, it is
important for the GNN model to enable more propa-
gation steps, so the feature patterns of labeled nodes
can be better propagated to the long-distance unlabeled
nodes. However, recent work pointed out the distortion
of information flowing from distant nodes (i.e., over-
squashing [14], [15]) as a factor limiting the efficiency
of message-passing for tasks relying on long-range node
interactions. In addition, real-world graphs often come
with a certain level of structure noise (e.g., “noisy”
and “missing” edges), which could be generated by
either adversaries [16], [17] or the data collection pro-
cess itself [18]. Such structure noise can easily interfere
with the message-passing process and make it difficult
to learn correct feature-label patterns with few labeled
nodes. Hence, it is crucial to avoid over-squashing and
reduce data noise in our endeavor to further improve the
performance of GST with few labeled nodes.

2) Semantic Bottleneck: It is challenging to learn
well-separated decision boundaries between different
node classes when labeled training data is severely scarce
and the semantic manifold is complex. Though GST
methods attempt to alleviate the data scarcity problem by
adding pseudo-labels, the nodes with pseudo-labels may
introduce complex feature patterns and pseudo-labels
can be unreliable, which causes the model performance
to deteriorate. We ask if novel ideas can be explored to
optimize the usage of pseudo-labels for capturing the
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underlying semantic structure of the sparsely-labeled
graph.

In this article, we propose an augmented graph self-training
framework, namely AGST, for tackling semi-supervised node
classification where few labeled nodes are available. We plan
to address the limitations of conventional GST methods by
proposing two original modules for structural and semantic
data augmentations. Specifically, our framework employs a
simple, decoupled GNN as the GST backbone, where the
teacher model first performs high-order label propagation (LP)
to generate pseudo-labels on unlabeled nodes based on person-
alized PageRank [19], and the student model conducts feature
transformation (FT) by mapping the features of nodes to their
gold/pseudo-labels. From the structural data augmentation
perspective, our framework not only enables large receptive
fields to capture long-range node interactions, but also avoids
the over-squashing issue by decoupling the transformation
and propagation steps in message passing. To further promote
information propagation, in each GST iteration, a deterministic
topology augmentation function is derived from the learned
model and is utilized to refine the input topological structure
for the next iteration. This way, we expect that AGST can
capture richer (i.e., both local and global) and cleaner (i.e.,
less noisy) structure knowledge during the GST process. From
the semantic data augmentation perspective, the pseudo-labels
introduced by the teacher model can enrich the semantic
knowledge of the training data when learning the student
model. To optimize the semantic alignment between the few
labeled nodes and generated pseudo-labeled nodes, we sug-
gest explicitly capturing the semantic structures of the input
graph by proposing a weakly supervised contrastive loss to
encourage intraclass compactness and interclass separability
in the latent feature space. As such, well-separated decision
boundaries can be learned during the GST process even with
few labeled nodes. The proposed AGST framework enables the
two data augmentation modules to work seamlessly with the
decoupled GST backbone and to quickly learn a robust graph
predictive model even with few labeled nodes. To summarize,
our key contributions are listed as follows:

1) Problem: We investigate the problem of semi-supervised
node classification under the challenging low-data setting,
which focuses on improving the replicability and sustain-
ability of GNNs in practical scenarios.

2) Algorithm: We propose a principled GST framework,
which differs from the existing efforts and improves the
performance with scarce labeled data by augmenting data
from both structural and semantic perspectives.

3) Evaluation: We conduct extensive experiments on vari-
ous real-world datasets to evaluate the effectiveness of
our approach. The experimental results demonstrate the
unique contributions made by AGST to performance
improvement over existing methods. Data and code are
available at https://github.com/kaize0409/AGST.

II. RELATED WORK

A. Graph Neural Networks

GNNs, a family of neural endeavors for learning latent node
representations on a graph, have drawn much attention in the

community of graph machine learning (GML) [4], [5], [20],
[21]. In general, GNNs can be categorized into spectral [4],
[20], [21], [22] and spatial approaches [5], [6], [23]. Origi-
nally inspired by graph spectral theory, spectral-based graph
convolutional networks (GCNs) extend convolution operation
in the spectral domain to graph-structured data. Among them,
the model proposed by Kipf and Welling [4] has become the
most prevailing one by using a linear filter. Later on, SGC [22]
is proposed to further reduce the computational complexity
by removing the nonlinearity of GCNs. As another line of
work, spatial-based GNNs define graph convolutions based on
a node’s spatial relations [5], [6], [23]. For example, GAT [5]
incorporates trainable attention weights to specify fine-grained
weights on neighbors when aggregating neighborhood infor-
mation of a node. In essence, although spectral-based and
spatial-based GNNs start on a different basis, both of them
share the same propagation rule, which is the message-passing
scheme. Those methods model the homophily principle [24]
and learn node representations by iteratively transforming,
and propagating/aggregating node features within graph neigh-
borhoods. When long-range node interactions are needed,
the over-squashing issue can largely undermine the model
performance if we directly increase the model depth. Thus,
researchers try to solve this issue by proposing different
techniques, such as self-attention mechanism [25], sampling
or rewiring edges [6], [26], decoupling the FT and propagation
steps [27], [28], [29], [30], [31], [32], and many others [11],
[33]. In particular, decoupled GNNs [29], [31] have become
a prevailing paradigm due to their simplicity and learning
efficiency. For example, APPNP [27] propagates the neural
predictions via personalized PageRank, which can preserve
the node’s local information while increasing the receptive
fields. Liu et al. [28] propose to decouple the propagation and
transformation steps and then utilize an adaptive adjustment
mechanism to balance the information from the local and
global neighborhoods of each node. However, the aforemen-
tioned models neglect the additional supervision signals from
unlabeled data, which has become a bottleneck for pushing
the performance boundary of GNNs. Though CGPN [34]
leverages Poisson learning to propagate the labels to the entire
graph, it cannot address the structure noise and explicitly
capture the semantic structures of the input graph.

B. Node Classification With Few Labels

In real-world scenarios, labeled training samples are usually
quite limited due to the intensive cost of data labeling. Albeit
the great success of GNNs for graph-based semi-supervised
learning, most of the existing efforts are designed as shal-
low models with a restricted receptive field, leading to their
ineffectiveness in limited labeled data scenarios [28], [29],
[35]. Under the extreme cases when very few labels are given,
shallow GNNs cannot effectively propagate the training labels
and characterize the global information of the input graph [11].
Many advanced deep GNNs [27], [28], [33], [36], [37] have
shown their advantages in leveraging large receptive fields
for propagating label signals. However, the main concern
in semi-supervised node classification, that is, the shortage
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of supervision information, has not been directly addressed.
To counter this issue, self-training [38], also known as pseudo-
labeling [10], where one imputes labels on unlabeled data
based on a teacher model trained with limited labeled data,
has been applied to improve GNNs to solve the problem
of semi-supervised node classification. Among those meth-
ods, Li et al. [11] first combine GCNs and self-training to
expand supervision signals. Furthermore, M3S [12] proposed
multistage self-training and utilized the clustering method to
eliminate the pseudo-labels that may be incorrect. Similar
ideas can also be found in [39], [40], and [41]. However, exist-
ing methods still adopt shallow GNNs to build the teacher and
student models, inherently restricting the effective propagation
of label signals. Apart from the aforementioned methods, our
AGST framework adopts a decoupled design, in which the
teacher model is an LP module and the student model is an FT
module. As such, our framework is capable of leveraging both
large receptive fields and weak supervision signals, making the
learned model more label-efficient. Additionally, we propose
a weakly supervised contrastive loss and a graph topology
augmentation function to further improve model performance
during the self-training process.

C. Contrastive Learning

Contrastive learning methods have demonstrated promising
outcomes in self-supervised representation learning. In gen-
eral, contrastive learning performs data augmentation on input
data and learns expressive representations by pulling together
the augmented views of the same example while pushing
away negative examples. For instance, MoCo [42] utilizes
a memory queue to store consistent representations, while
SimCLR [43] optimizes InfoNCE within mini-batches and
incorporates effective training techniques like data augmen-
tation. Recently, prototypical contrastive learning (PCL) [44]
has been proposed, which uses cluster centroids as prototypes,
and trains the network by pulling each instance closer to its
assigned prototypes. However, these unsupervised contrastive
learning approaches primarily focus on inducing transferable
representations for downstream tasks rather than training with
noisy labels. Although supervised contrastive learning [45]
improves representations using human-annotated labels, it suf-
fers from performance degradation in the presence of label
noise [46], [47].

In the meantime, contrastive learning has also been suc-
cessfully applied to graph-structured data to improve graph
representation learning [48], [49], [50], [51], [52], [53], [54].
Different from the existing graph contrastive learning meth-
ods that mostly focus on unsupervised graph representation
learning, the proposed weakly supervised graph contrastive
learning algorithm in this work mitigates the label noise in
the pseudo-node labels by aligning the semantic structure
between labeled nodes and pseudo-labeled nodes. This weakly
supervised learning loss helps improve the node representation
learning when labeled nodes are extremely limited.

III. PROPOSED APPROACH

We start by introducing the notations used throughout this
article. We let bold uppercase letters represent matrices and

bold lowercase letters denote vectors. Let G = (V, E, X)

denote an undirected graph with nodes V and edges E . Let
n denote the number of nodes and m the number of edges.
The nodes in G are described by the attribute matrix X ∈

Rn× f , where f denotes the number of features per node. The
graph structure of G is described by the adjacency matrix
A ∈ {0, 1}

n×n , while Ã stands for the adjacency matrix for a
graph with added self-loops. We let D̃ be the diagonal degree
matrix of Ã and S = D̃−(1/2)ÃD̃−(1/2) denote the symmetric
normalized adjacency matrix with self-loops. The class (or
label) matrix is represented by Y ∈ Rn×c, where c denotes the
number of classes.

Problem Definition: Given an input graph G = (V, E, X),
where the node set V is composed by two disjoint node subsets
V L and VU . In this article, we focus on the semi-supervised
node classification task under the limited labeled data setting.
Specifically, suppose that the labels of the labeled training
set V L are given, where each node class in V L only has a
few labeled nodes (could be either balanced or imbalanced
for different classes), the goal is to predict the labels of the
unlabeled nodes in VU . Note that if each class has the same
number of K -labeled nodes, the studied problem can be called
few-shot semi-supervised node classification.

Architecture Overview: In this section, we propose an AGST
framework to solve the problem of semi-supervised node
classification with only a few labeled nodes. Compared to
existing efforts, AGST can address the structural and semantic
bottlenecks under the limited labeled data setting by virtue
of two focal designs: 1) a new GST backbone with a graph
topology augmentation function that can leverage long-range
node interactions while alleviating the structure noise and 2) a
weakly supervised contrastive loss that enhances the semantic
structures of the input graph by aligning the semantic sim-
ilarities between pseudo-labeled data and gold-labeled data.
A detailed illustration of the proposed approach can be found
in Fig. 1.

A. Augmenting Structural Knowledge in GST

For semi-supervised node classification, graph neural pre-
dictors commonly have a large variance and are easy to overfit
when the labeled training data is extremely limited [11], [12].
Although previous GST methods partially alleviate this issue
by expanding the labeled training set, they still suffer from
the incapability of leveraging long-range node interactions
and handling structure noise in nature: on the one hand,
if the teacher and student model share the same shallow GNN
architecture, the over-squashing issue will largely impede the
effective propagation of feature-label patterns when multiple
layers are deployed; on the other hand, the missing or noisy
edges in the input graph may also distort the information
flow. To better exploit the useful graph structural knowledge,
we go beyond the existing GST architectures and develop
a decoupled GST backbone integrated with a structural data
augmentation module.

1) Teacher Model: In a self-training framework, the teacher
model serves the role of generating pseudo-labels on unlabeled
data to augment the limited training set. The teacher model
in our decoupled GST framework is an LP module that
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Fig. 1. Overview of the proposed framework. In each training iteration, AGST first performs high-order LP to generate pseudo-labels on unlabeled nodes, then
conducts FT with the augmented training label set. In the meantime, a weakly supervised contrastive loss is used for optimizing the usage of pseudo-labels.
Based on the computed edge probability matrix, the input graph structure will be augmented and fed to the next iteration. Figure best viewed in color.

enables long-range propagation of label signals for computing
the pseudo-labels. This way the pseudo-labels preserve both
local and global structure knowledge when further training
the student model. Specifically, the objective of LP is to find
a prediction matrix Ŷ ∈ Rn×c that agrees with the label matrix
Y while being smooth on the graph such that nearby vertices
have similar soft labels

Ŷ = arg min
Ŷ

(
Tr(Ŷ T

(I − S)Ŷ )︸ ︷︷ ︸
smoothness constraint

+ µ||Ŷ − Y||
2
2︸ ︷︷ ︸

fitting constraint

)
(1)

where µ is a positive parameter that balances the tradeoff
between these two competing constraints. The smoothness
term smooths each column of the prediction matrix along the
graph structure, while the fitting term enforces the prediction
matrix Ŷ to agree with the label matrix Y.

By solving the above-unconstrained optimization function,
a closed-form solution can be computed as Ŷ = (1 −

α)(I − αS)−1Y, where α = (1)/(µ + 1). As derived by
Zhou et al. [55], the solution can be approximated via the
following iteration:

Y(t+1)
= αSY(t)

+ (1 − α)Y(0) (2)

where Y(0)
= Y, which converges to Ŷ rapidly. Here 1−α can

be naturally connected with the teleport probability in Person-
alized PageRank [27]. With an appropriate α, the smoothed
labels can avoid losing the focus on local neighborhood [11]
even using infinitely many propagation steps.

2) Student Model: Since the LP-based teacher model sup-
ports long-range propagation without losing its focus on the
local neighborhood, both local and global structure knowledge
will be captured in the computed soft pseudo-labels. Next,
we develop an FT module as the student model to distill the
knowledge from the teacher model and meanwhile learn the
feature knowledge by transforming the node features to class
labels. The student model is composed of an encoder network
fθ (·) followed by a prediction network gφ(·). For node vi , the
class prediction can be computed

p̂i = gφ(zi ), zi = fθ (xi ) (3)

where the predicted label p̂i is computed based on the node
features xi . Specifically, the encoder network fθ (·) is built
with a two-layer MLP, and the prediction network gφ(·) is a
feed-forward layer followed by Softmax, producing a vector
of confidence scores.

To learn the student model, instead of using hard
pseudo-labels as previous GST methods, here we consider the
soft pseudo-labels generated by the LP-based teacher model
as the ground truth and compute the standard cross-entropy
loss on unlabeled nodes

LU
CE = −

∑
vi ∈VU

C∑
c=1

ŷc
i log p̂c

i . (4)

In addition, we derive another cross-entropy loss for the
nodes from the labeled training set

LL
CE = −

∑
vi ∈V L

C∑
c=1

yc
i log p̂c

i . (5)

By jointly optimizing the above losses, we can learn a
simple yet effective student model for semi-supervised node
classification with only a few labels.

3) Graph Topology Augmentation: Real-world graphs com-
monly come with a certain level of structure noise, which
could be induced by either partial observation, graph prepro-
cessing, or even adversarial attacks [16], [18], [56]. Since
labeled nodes are extremely limited, the feature patterns of
labeled nodes will be even harder to propagate to unlabeled
nodes due to the imperfect graph structure. Considering that
message-passing is a type of Laplacian Smoothing [27],
representations of nodes belonging to different classes will
become inseparable due to the existence of many unnecessary
interclass edges. As such, we argue that it is helpful to
eliminate potentially noisy edges and strengthen the con-
nections between similar nodes for better preserving the
graph structure knowledge and improving the effectiveness of
message-passing.

To this end, after the student model converges in each self-
training iteration, we in turn use it to refine the graph topology
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by strengthening intraclass edges and reducing interclass con-
nections. Specifically, given the predicted label matrix P̂, the
edge probability matrix Â (symmetric) is computed by

Â = σ(P̂TP̂), P̂ = gφ( fθ (X)) (6)

where Âi j denotes the probability that node vi and v j belong
to the same class and σ is an element-wise sigmoid function.

Based on the Homophily principle [24] that assumes similar
nodes are likely to be connected, thus we add/remove the
edge ei j in the original adjacency matrix A if the edge
probability Âi j is larger/less than a threshold. Specifically,
we add top βa|E | nonexist (intraclass) edges with highest edge
probabilities and removes the βr |E | existing (interclass) edges
with lowest edge probabilities, where βa, βr ∈ [0, 1].

4) Design Discussion: It is noteworthy that such a design
has the following unique advantages: 1) unlike traditional
GNNs, where neighborhood aggregation and FT are tightly
coupled in each layer, we employ a decoupled approach
by separating the transformation and propagation steps in
message passing. Despite this innovation, it remains firmly
rooted in the foundational principles of GNNs and adopts the
decoupled GNN structure to harness its advantages. It not only
enables long-range propagation of feature-label patterns by
decoupling the transformation and propagation steps, but also
improves the propagation process by using the learned student
model to augment the input graph structure; 2) different
from the standard self-training paradigm where teacher and
student have the same architecture, our decoupled backbone
uses an LP module as the teacher and an MLP as the
student, which is parameter-less and evidently efficient; and
3) previous GST methods need to select unlabeled samples
with high confidence as training targets. However, many of
these selected predictions are incorrect due to the poor cali-
bration of neural networks [57]. Our approach uses propagated
soft pseudo-labels to circumvent the process of pseudo-label
selection.

B. Augmenting Semantic Knowledge in GST

Despite the effectiveness of the above design, the gener-
ated pseudo-labels could introduce complex feature patterns
and noisy training labels since the teacher model is trained
with few labels, which exacerbates the difficulty of learning
well-separated decision boundaries. Hence, how to enforce
pseudo-labeled nodes to have aligned usage of gold-labeled
ones is another important factor for improving the semantic
knowledge of GST under the low-data regime.

To this end, we propose a weakly supervised contrastive
loss that mitigates pseudo-label noise and enhances semantic
structure learning. Specifically, a contrastive loss [43] encour-
ages the similarity function to assign large values to the
positive pairs and small values to the negative pairs. With
similarity measured by dot product, a form of a contrastive
loss function, called InfoNCE [42], [58] has been widely used
in self-supervised learning

LInfoNCE =

n∑
i=1

− log
exp(zi · z′

i/τ)∑r
j=0 exp(zi · z′

j/τ)
(7)

where z′

i are positive embedding for zi , and z′

j includes
one positive embedding and r negative embeddings for other
instances. Here, τ is a temperature hyperparameter.

Different from the unsupervised contrastive loss [58] which
only preserves the local smoothness around each instance,
our goal is to improve the utility of pseudo-labeled nodes to
learn better semantic structures of the input graph. To achieve
this, we first compute the similarity distribution between
pseudo-labeled samples and different class prototypes in the
feature space

s j
i =

exp(zi · c j/τ)∑C
c=1 exp(zi · cc/τ)

, cc =
1

|V L
c |

∑
vi ∈V L

c

zi (8)

where V L
c denotes the labeled node set of class c and cc is the

corresponding class prototype computed as the average of the
labeled examples in class c.

Due to the existence of incorrect pseudo-labels, there could
be an inconsistency between the latent feature space and the
pseudo-label space. Here, we apply the following rule to obtain
a filtered set of pseudo-labeled nodes VÛ :

s ŷi
i > 1/C, ŷi = arg max

j
ŷ j

i (9)

where ŷi is the hard pseudo-label of node vi with the
maximum confidence score. For each pseudo-labeled node
vi , we consider it trustworthy if its embedding similarity
(to its pseudo-labeled prototype) s ŷi

i is higher than uniform
probability, this way we largely reduce the risk of noisy
training on hard pseudo-labels.

With the calibrated pseudo-labeled node set, next, we try to
enhance the intraclass compactness and interclass separability
of learned node representations. Specifically, our contrastive
loss encourages each node to cluster around its corresponding
class prototypes, which can be formulated as follows:

LCL =

∑
vi ∈VÛ

− log
exp(zi · cŷi

/τ)∑C
c=1 exp(zi · cc/τ)

(10)

where cŷi
denotes the corresponding prototype of node vi . For

any pseudo-labeled node vi , its embedding, zi , is treated as the
anchor, the embedding of its corresponding class prototype cŷi

forms the positive sample, and the embeddings of other class
prototypes are naturally regarded as negative samples. This
loss will be optimized to reduce the variance of pseudo-labeled
nodes that share the same semantics while pushing away
instances from different classes.

For the sake of stable training, we follow the idea of
MoCo [42] and use the node representations learned from a
momentum encoder parameterized by fθ ′(xi ) to compute the
momentum prototype of each class. Note that the momentum
encoder has the same architecture as the encoder network,
and its parameters are the moving-average of the encoder’s
parameters. Formally

θ ′

t = m · θ ′

t−1 + (1 − m) · θ t (11)

where m, θ , and θ ′ are momentum, encoder parameters, and
the momentum encoder parameters, respectively.
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Algorithm 1 Learning Algorithm of AGST
Input: The input graph G = (V, E) with labeled node

set V L and unlabeled node set VU , self-training
iterations I

Output: The well-trained student model
1 Initialize the parameters θ and φ

2 for i = 1, 2, . . . , I do
3 ▷ Label Propagation (Teacher)
4 Generate soft pseudo-labels on unlabeled nodes by

Eq. (2);
5 ▷ Feature Transformation (Student)
6 while not converge do
7 Compute the classification loss according to

Eq. (4), Eq. (5);
8 Compute the contrastive loss according to

Eq. (10);
9 Update the student model’s parameters by

optimizing the joint loss in Eq. (12);
10 ▷ Graph Topology Augmentation
11 Compute the edge probability matrix using Eq. (6);
12 Augment the input graph by adding/removing

edges
13 return The student model

C. Model Training

Given the above focal designs, we train the AGST frame-
work in an iterative learning fashion. In each self-training
iteration, the teacher model first generates pseudo-labels and
we then optimize the student model until converges. After-
ward, the graph structure will be refined by the topology
augmentation function and fed to the next iteration.

To train the student model end-to-end, we jointly optimize
the classification losses and the weakly-supervised contrastive
loss. The full training objective is defined as follows:

L = LL
CE + λ1LU

CE + λ2LCL (12)

where λ1 and λ2 are balancing parameters. According to our
preliminary experiments, simply setting the parameters λ1 and
λ2 as 1 and 0.1 can offer stable and strong performance
in practice. By minimizing the training objective, the rich
unlabeled data and the scarce, yet valuable labeled data work
collaboratively to provide additional supervision signals for
learning the discriminative prediction model. The detailed
learning process of AGST is presented in Algorithm 1. Note
that in each iteration, we refine the graph topology based on
the original graph structure instead of the previously refined
graph, since informative edges might be accidentally removed
at the early stage of the training procedure. To reduce compu-
tational complexity, we only consider the edge between node
vi and v j as candidates only when they have the same hard
labels when adding edges. Furthermore, by refining the graph
structure, it is essential to repeat training both the teacher and
student models, which connects naturally to the iteration loops
in conventional self-training.

TABLE I
SUMMARY STATISTICS OF THE EVALUATION DATASETS

IV. EXPERIMENTS

In this section, we start by introducing the setup of our
experiments. Then, we conduct experiments on benchmark
datasets to show the effectiveness of the proposed framework.

A. Experimental Setup

1) Evaluation Datasets: We adopt six graph benchmark
datasets to demonstrate the effectiveness of the proposed
approach for semi-supervised node classification. Specifi-
cally, Cora [59], CiteSeer [59], and PubMed [60] are three
most widely used citation networks. Coauthor-CS [61] and
Coauthor-Physics [61] are two co-authorship graphs based
on the Microsoft Academic Graph. Amazon-Photo [61] is an
Amazon product co-purchase networks. The detailed statistics
of the datasets are summarized in Table I.

To provide a robust and fair comparison between different
models on each dataset, we evaluate two low-data settings with
different data splitting protocols as follows.
1) Balanced Training Setting: Similar to the setting in [28]

and [61], for each dataset, we sample a few (i.e., K -shot)
labeled nodes per class as the training set, 30 nodes per
class as the validation set, and the rest as the test set.
We conduct 100 runs for random training/validation/test
splits to ensure a fair comparison.

2) Imbalanced Training Setting: In this setting, we strictly
follow the setup in [11] and [12] and randomly split the
data into one small sample subset for training, and the test
sample subset with 1000 samples. Following this line of
work, we report the mean accuracy of ten runs without
validation to make a fair comparison.

2) Compared Methods: In our experiments, we compare the
proposed approach AGST with both classic and state-of-the-
art methods on the semi-supervised node classification task.
In addition to the traditional semi-supervised learning method
LP, other baseline methods can be generally categorized into
three classes: 1) Vanilla GNNs that only allows shallow
message passing, including GCN [4], GAT [5], and SGC [22];
2) Deep GNNs that can better propagate messages from limited
labeled data, including GLP [62], IGCN [62], CGPN [34], and
NAGphormer [25]; and 3) Self-training GNNs that adopt the
teacher–student architecture to leverage pseudo-labels during
training, including PTA [29], ST-GCNs [11] (and its variants),
and M3S [12].

3) Implementation Details: We implement the proposed
AGST in PyTorch with a 12 GB Titan Xp GPU. Specif-
ically, we use a two-layer MLP with 64 hidden units for
the FT module. The self-training iteration of AGST is set
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TABLE II
TEST ACCURACY OF SEMI-SUPERVISED NODE CLASSIFICATION WITH FEW LABELS (IMBALANCED TRAINING SETTING): MEAN ACCURACY (%) WITH

95% CONFIDENCE INTERVAL. RESULTS OF BASELINE METHODS ARE BORROWED FROM M3S [12]

to 3 for all the datasets. We set the propagation steps
K = 10 by default. We optimize the model with the Adam
optimizer and grid search for the edge addition/removal rate
in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8., 0.9, 1.0}. The optimal
values are selected when the model achieves the best perfor-
mance for the validation set. The early stopping criterion uses
a patience of p = 100 and an (unreachably high) maximum
of n = 10 000 epochs. The patience is reset whenever the
accuracy increases or the loss decreases on the validation set.

B. Main Results

In our experiments, we evaluate the proposed framework
AGST and all the baseline methods on semi-supervised node
classification tasks in low-data settings, which aims to predict
the missing node labels with only a few labeled nodes.

1) Balanced Training Setting: We first compare the pro-
posed framework AGST with baseline methods under the
canonical few-shot semi-supervised setting. In this setting,
each node class is provided with a few labeled samples.
We run each model with three, five, and ten labeled nodes
per class, referred to as three-shot, five-shot, and ten-shot
configurations. The resulting average test accuracy under such
a balanced training setting is reported in Table II. According
to the reported results, we can make the following in-depth
observations and analysis.

1) Overall, AGST consistently outperforms all the baseline
methods across each dataset, as evidenced by paired
t-tests with a significance level of p < 0.05. For example,
AGST improves the best-performing baseline model (i.e.,
PTA) on Cora and obtains a 4.01% improvement in
five-shot evaluation. This observation further proves that
the design of AGST is effective for tackling the node
classification problem when only a few labels per class
are given.

2) Both deep GNNs and GST methods can achieve better
performance over shallow GNNs such as GCN and GAT
when training data is extremely scarce. While compared
to the deep GNNs, existing GST methods cannot achieve
better performance in most cases, which verifies our claim
that their shallow backbones largely restrict the effective
propagation of label signals. In contrast, our framework,
AGST, adopts a decoupled backbone that inherits the

advantages of both deep GNN models and GST methods,
which is more data-efficient.

3) Though LP only relies on structure information, it can
perform competitively with shallow GNNs on some
datasets when training labels are extremely limited, such
as Cora and PubMed. However, we also noticed that LP
became the worst-performing method on datasets like
CiteSeer and Coauthor CS. The main reason behind this
is that noisy graph structure could easily lead to incorrect
propagation of label signals, which verifies the rationality
and necessity of refining the graph topology in GST.

2) Imbalanced Training Setting: Furthermore, we follow
the imbalanced training setting used in [11] and [12] and
conduct an additional series of experiments with varying label
rates for each model. Specifically, we use label rates of 0.5%,
1%, 2%, and 3% for Cora and CiteSeer, and 0.03%, 0.05%,
and 0.1% for PubMed. In this setup, the number of training
nodes for each class is proportional to the total number
of nodes belonging to a specific class within the dataset.
Compared to the balanced training setting, this evaluation
setting is more challenging since the training labels for each
class could vary a lot (i.e., the ratio between the largest and
the smallest classes in Cora is approximately 4:1). We report
the average accuracy on three datasets in Table III. For a fair
comparison, the results of baseline methods are borrowed from
the previous work [12].

1) Similar to the balanced training setting, GCN that only
uses limited receptive fields cannot achieve satisfactory
results when labeled data is scarce and imbalanced. The
integration of pseudo-labels into the learning process,
as demonstrated by methods such as Co-train, Self-train,
Union, and Intersection, proves effective in enhancing
the performance of GCN when only limited labels are
available.

2) However, the performance of those baselines based on
pseudo-labeling varies a lot under different datasets. This
highlights the practical challenge of effectively choosing
informative pseudo-labels and mitigating the pseudo-label
noise. Though M3S partially addresses this by using
the clustering methods, it still largely falls behind our
approach due to the inability to leverage large receptive
fields and handle structure noise.
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TABLE III
TEST ACCURACY OF SEMI-SUPERVISED NODE CLASSIFICATION WITH FEW LABELS (BALANCED TRAINING SETTING):

MEAN ACCURACY (%) WITH 95% CONFIDENCE INTERVAL

3) Compared to the original LP, the teacher model in the
proposed AGST framework achieves better performance,
even though they both use the same LP algorithm.
It demonstrates that the graph structure can be well
refined by our graph topology augmentation function.
Based on both labeled and unlabeled data, the student
model further pushes forward the performance by per-
forming FT and weakly supervised contrastive learning.

3) Standard (20-Shot) Training Setting: Next, we examine
the performance of AGST under the standard semi-supervised
node classification tasks. Specifically, we randomly sample
20 labeled nodes for each class (i.e., 20-shot) as the training set
and test the performance of different methods. According to
the average performance reported in Table IV, we can observe
that: 1) the performance gain of GST methods over the vanilla
GNNs decreases since the standard training setting has more
labeled data; 2) data-efficient GNN such as CGPN cannot
perform well under the standard semi-supervised learning
setting; and 3) though AGST is mainly proposed for few-shot
semi-supervised learning, it still achieves the best performance
for the standard semi-supervised node classification task, illus-
trating the superiority of our approach.

C. Ablation Study

In this section, we further conduct ablation studies to
demonstrate the contribution of each component in AGST
and justify our architectural design choice. Here, AGST-base
denotes the decoupled GST backbone of our framework.
Meanwhile, we include other two variants by removing each
of the other two key designs in the proposed framework.
Specifically, w/o contrast represents the variant of AGST

TABLE IV
TEST ACCURACY ON STANDARD (20-SHOT) NODE CLASSIFICATION:

MEAN ACCURACY (%) WITH 95% CONFIDENCE INTERVAL

that excludes the weakly supervised contrastive loss, and w/o
augment is the variant without the graph topology augmen-
tation function. Compared to the complete framework AGST,
w/o contrast loses part of the semantic knowledge and w/o
augment loses part of the structural knowledge.

We report the accuracy results of each variant (balanced
training) on two datasets Cora, CiteSeer in Fig. 2. It is
apparent that the classification accuracy will decrease when
any one of the focal components is removed, which reveals
that both the weakly supervised contrastive loss and the graph
topology augmentation function make essential contributions
to boosting the model performance. Meanwhile, compared
to the conventional GNNs in Table III, the backbone of
AGST, that is, AGST-base can achieve better classification
performance. Meanwhile, by comparing w/o augment with
AGST-base, we can see that our contrastive loss brings further
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Fig. 2. Ablation results for different model variants. (a) Cora. (b) CiteSeer.

Fig. 3. Parameter analysis (λ1, λ2) results on (a) Cora and (b) Citeseer
(5-shot).

improvements. Notably, the importance of the topology aug-
mentation function varies on different datasets, it usually has
a larger contribution on datasets with noisy graph structures,
such as CiteSeer.

D. Parameter Analysis

1) Loss Balancing Parameters: We explore the sensitivity
of the model performance in terms of hyperparameters λ1 and
λ2, which are in the final objective function of AGST. λ1 con-
trols the contribution of the cross-entropy loss on pseudo-
labels (i.e., LU

CE) and λ2 controls the contribution of weakly
supervised contrastive loss (i.e., LCL). Specifically, we vary
the values of λ1 and λ2 as {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} on
the Cora and Citeseer datasets and report the results of AGST
in Fig. 3. As we can see from the figure, the performance of
AGST goes up when we increase the value of λ1 and reach
the peak when λ1 = 1. For λ2, the best-performing value is
0.1. The performance will decrease if the value is either too
large or too small. We have aligned observations with other
datasets.

2) Topology Augmentation: We further examine the impact
of two hyperparameters in our graph topology augmentation
module, that is, the edge addition ratio βa and the edge
removal ratio βr for refining the graph structure. Fig. 4 shows
the performance change (five-shot) on the Cora dataset by
varying the value of each parameter, with a constant interval
of 0.1. We also add the performance of AGST as a reference.
We observe that our graph topology augmentation function
improves performance by either adding or removing edges
within an appropriate range to mitigate the structure noise. For
instance, the accuracy is first boosted by adding edges, then it
reaches the peak until ∼ 40% and becomes stable throughout
the range. Similarly, edge removal improves performance until

Fig. 4. Parameter analysis (βa, βr ) results on Cora (5-shot).

Fig. 5. Parameter analysis for propagation steps T. (a) Cora. (b) CiteSeer.

∼ 20%, then the accuracy decreases quickly. One explanation
is that a higher threshold may result in the accidental removal
of possibly useful intraclass edges.

3) Propagation Steps: To demonstrate the effects of using
different propagation steps, we compare our approach with
two baselines (i.e., LP and GCN) under the five-shot setting
with varying numbers of T . As shown in Fig. 5, we can
clearly see that GCN encounters performance degradation if
we largely increase the number of propagation steps. Though
LP is a naive baseline, its performance increases by using
larger propagation steps. Our framework AGST adopts a
decoupled backbone where LP serves as the teacher model,
thus it can address the oversquashing issue and leverage large
receptive fields. AGST achieves stable performance when the
propagation step T > 5.

V. CONCLUSION

Addressing the challenge of limited labeled nodes is crucial
for achieving robust and sustainable graph semi-supervised
learning. In this article, we investigate the problem of
semi-supervised node classification when only a few labeled
nodes are available and present a novel solution—an AGST
framework. Specifically, this framework incorporates two
unique graph data augmentation modules to capture both
structural and semantic information for graph self-training to
improve the model performance using a few labeled nodes.
We perform experiments across diverse benchmark datasets in
various low-data settings. The empirical results demonstrate
the effectiveness of our proposed framework versus the base-
line methods, particularly in scenarios involving classification
with few labeled nodes. As part of future work, we aim to
explore learnable graph augmentation modules that can adapt
to nonhomophilous graphs [63], [64] and to develop a more
powerful GST backbone model.
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