Enhancing Expert Finding Using Organizational Hierarchies

Maryam Karimzadehgan (U. Illinois Urbana-Champaign)*, Ryen White (MSR), Matthew Richardson (MSR)

Presented by Ryen White Microsoft Research

* MSR Intern, Summer 08
Motivation for expert finding

- Some questions cannot be answered using a Web search engine
 - Involve tacit / procedural knowledge, internal org topics
- Some solutions:
 - Social connections (ask people, follow referrals)
 - Time-consuming in large organizations
 - Post to forum or mail distribution list
 - May be unanswered, interrupt many, high latency
 - Find one or more candidate experts and present the question to them
 - Finding these experts is the challenge of expert finding...
Overview

- Task in expert finding is to find people in an organization with expertise on query topic
- Profiles typically constructed for each member from sources such as email / shared documents

- What if we don’t have a profile for everyone?
- Can we use organizational hierarchy to help us find experts without profiles and refine others’ profiles?
- Propose and evaluate algorithm that considers org. member and the expertise of his or her neighbors
Organizational hierarchy

- Depicts managerial relationships between organizational members
- Nodes represent members (people)
- Links represent reporting and peer relationships
- Peers are members with the same direct manager

Can we use the hierarchy to improve expert finding by sharing expertise around the hierarchy?
Does proximity \Rightarrow shared expertise?

- Before we can use neighbors as a proxy for a member’s expertise we must know if their expertise is comparable.
- People who work in the same group may have similar interests and expertise because:
 - They work on the same product
 - Their role is probably similar (dev, test, HR, legal, sales)
- Neighbors may be good proxies for those with no profile

But we should check to be sure...
Does proximity ⇒ shared expertise?

- We conducted a study with Microsoft Corporation
- MS employs over 150,000 people, inc. temps/vendors
- By crawling internal email distribution lists we created profiles for 24% of employees via their sent mail
 - Demonstrates the challenge (76% had no profile)
- Selected random question from internal “idunno” list:

 Subject: Standard clip art catalog or library

 Body: Do we have a corporate standard collection of clip art to use in presentations, specs, etc.?

- Found candidates, asked them to rate own expertise
Does proximity ⇒ shared expertise?

- Asked for self-evaluation 0/1/2 = couldn’t answer / some knowledge / could answer
- Emailed immediate neighbors same self-evaluation

<table>
<thead>
<tr>
<th>Source member rating</th>
<th>Mean neighbor rating</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.45</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>0.86</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>1.41</td>
<td>61</td>
</tr>
</tbody>
</table>

- A organizational member’s expertise correlates strongly neighbor expertise (caveat: for this particular question)
- Neighbors’ expertise may be a good proxy for missing profiles or useful to refine existing profiles
Expert Modeling Techniques
Baseline

- Language-modeling approach
- Build profile based on email associated with person
- Compute probability that this model generates query

$$p(q \mid e_j) = \prod_{w \in q} \frac{c(w, e_j) + \mu p(w \mid E)}{N_{e_j} + \mu}$$

- Text representation of expertise for j^{th} expert
- Number of times word w occurs in e_j
- Estimated from all expertise docs, E
- Total number of words in e_j
- Dirichlet prior – set empirically
Hierarchy-based algorithm

- Baseline only effective if we have email for all members
 - Since this is unlikely, we propose to use org. hierarchy
- All members scored w/ Baseline (many get zero score)
- Then, their scores are smoothed with neighbors

\[
p_{\text{smooth}}(q \mid e_j) = \alpha p(q \mid e_j) + \frac{(1 - \alpha)}{N_j} \sum_{i=1}^{N_j} p(q \mid e_i)
\]

- \(\alpha\) weights member versus neighbors
- Initial scores using Baseline
- Number of neighbors of \(j\)
Smoothing

- Multi-level
 - One, two, or three

Candidate expert

= member w/ query-relevant profile
Evaluation
Expert profiling

- Profiles were constructed for organizational members
- Emails sent to internal discussion lists within MS
 - Stemmed text, only used text they wrote (not question)
 - “idunno” list was excluded from this crawl
- Average number of emails per employee = 29
- Median number of emails per employee = 6
- We have outgoing emails for only approximately 36,000 employees (there are ~153,000 employees)
 - We have information for only 24% of all employees
Expert-rating data

- Compare the baseline and hierarchy-based algorithms
- Expert rating data used as ground truth
- Devise and distribute survey with 20 randomly-selected questions from internal “idunno” discussion list
 - Examples of questions from the list: Where can I get technical support for MS SQL Server? Who is the MS representative for college recruiting at UT Austin?
- Survey was distributed to the 1832 member of the discussion list, 189 respondents rated their expertise as 0/1/2 for each of the 20 questions
 - 0/1/2 = couldn’t answer / some knowledge / could answer
Methodology

- Baseline is sub-part of hierarchy-based algorithm
 - Allowed us to determine the effect of using hierarchy
- Set Dirichlet prior, μ, to 100 and the hierarchy smoothing parameter, α, to 0.9 - both determined empirically via parameter sweeps
- Used subjects of 20 selected questions as test queries
- Expert rating of $2 = \text{relevant, } 0/1 = \text{non-relevant}$
- Generated a ranked list of employees using each alg.
- Computed precision-recall and avg. over all queries
Evaluation Results
Precision-recall

- Ranked all employees for each question
- Kept only those for whom we had ratings (189 total)
- Interpolated-averaged 11-point PR curve
Precision-recall - ranking

- Prior findings could be explained by hierarchy-based algorithm returning more employees
- We used each algorithm to rank all employees
- We kept only those for which we had expert ratings, maintaining their relative rank order.
- We did not ignore rated employees that were not retrieved, but we appended them to the end of the result list in random order.
- Computed precision-recall curves for each algorithm, where each point was averaged across 100 runs
Precision-recall - ranking

- Interpolated precision at zero for all alg. is approx. 0.58
- Hierarchy-based algorithm also better at ranking
Further opportunities

- We investigated propagating keywords around the hierarchy rather than scores
 - Keyword performance was significantly worse
 - Perhaps because of low keyword quality or a shortage of information about each employee (only a few emails each)
- Weighting edges between organizational members based on their relationship
 - Peer-to-peer ≠ manager-to-subordinate
- Experiment with other sources
 - Whitepapers, websites, communication patterns
Summary

• **Expertise representation:**
 - Use org. hierarchy to address data sparseness challenge when we lack information for all org. members

• **Expertise modeling:**
 - Hierarchy-based algorithm to share expertise info.

• **Evaluation:**
 - Org. hierarchy and human-evaluated data from Microsoft

• **Outcome:**
 - Org. hierarchy improves expert finding – useful on its own or perhaps as a feature in machine learning (future work)