Characterizing the Influence of Domain Expertise on Web Search Behavior

Ryen White, Susan Dumais, Jaime Teevan Microsoft Research {ryenw, sdumais, teevan}@microsoft.com

Example to start

- A cardiologist and a newly-diagnosed patient get the same results for the query "heart disease"
- If we could estimate their level of expertise we could tailor the search experience to each of them
 - Cardiologist could get technical articles
 - Patient could get tutorial information
- This paper is about characterizing and using such domain expertise to improve Web search

Background

- Domain expertise = knowledge of subject area
- Domain expertise ≠ search expertise
 - Search expertise is knowledge of search process
- Previous research has highlighted differences between domain experts and domain non-experts
 - Site selection and sequencing, task completion time, vocabulary and search expression, ...
 - Involve small numbers of subjects w/ controlled tasks
- We extend this work in breadth (↑ domains) and scale

Outline

- Studying Domain Expertise
 - Study overview
 - Log data
 - Automatically identifying domain experts
 - Differences between experts vs. non-experts
- Using Domain Expertise
 - Predicting domain expertise based on search interaction
 - Improving search experience via expertise information
- Conclusions

Studying Domain Expertise

Study

- Log-based study of Web search behavior
- Contrast strategies of experts and non-experts
- Large-scale analysis w/ greater diversity in vocabulary, web sites, and tasks than lab-based studies
- Four domains were studied
 - Medical, Legal, Financial, Computer Science
 - Large professional groups who use Web, of general interest
 - Just focus on Medical in this talk for time...

Data Sources

- Logs w/ querying *and* browsing behavior of many users
 - Three months from May 2007 through July 2007
 - > 10 billion URL visits from > 500K users
- Extracted browse trails and search sessions
 - *Browse trails* = sequence of URLs per tab/browser instance
 - Search sessions = sub-trails starting w/ search engine query and ending w/ 30 min. interaction timeout
- Search sessions let us compare domain experts and nonexperts in and out of their domain of interest
- First need to differentiate experts from non-experts ...

Identifying Domain Experts

- Two steps in identifying domain experts from logs:
 - Step 1: Identify users with topical interest
 - Ensures that behavior relates to users interested in domain and helped control for topic differences
 - **Step 2:** Separate experts from non-experts
 - From user group in Step 1, separate experts based on whether they visit specialist Websites
- Simple, broadly-applicable method
- Lets us extend lab studies to real-world settings

Topical Interest

- Classified browse trails using Open Directory Project
 - Automatically assigned labels to URLs based on ODP with URL back-off as required
 - Filtered outliers and computed % pages in each domain
 - Medical = Health/Medicine
 - Financial = Business/Financial_Services
 - Legal = Society/Law/Legal_Information
 - Computer Science = Computers/Computer_Science

Domain	# users	# sessions	# in-domain sessions
Medical	45,214	1,918,722	94,036
Financial	194,409	6,489,674	279,471
Legal	25,141	1,010,868	36,418
Computer Science	2,427	113,037	3,706

Dividing Experts & Non-Experts

- Surveys, interviews, etc. not viable at scale
- Divided experts/non-experts using observable behavior
- Filtered users by whether they visited specialist sites
 - Sites identified through discussion w/ domain experts

Domain	Expert URL filters	Expert	Non-expert
Medical	ncbi.nlm.nih.gov/pubmed, pubmedcentral.nih.gov	7,971 (17.6%)	37,243 (82.4%)
Financial	bloomberg.com, edgar-online.com, hoovers.com, sec.gov	8,850 (4.6%)	185,559 (95.4 %)
Legal	lexis.com, westlaw.com	2,501 (9.9%)	22,640 (90.1 %)
CS	acm.org/dl, portal.acm.org	949 (39.1%)	1,478 (60.9%)

• Most sites require subscription; assume visitors have *above average* domain knowledge

Differences between Domain Experts and Non-Experts

Domain Expertise Differences

- Behavior of experts/non-experts differs in many ways
- Some are obvious:
 - *Queries* (experts use more tech. vocab., longer queries)
 - Source selection (experts utilize more tech. sources)
 - URL-based analysis
 - Content-based analysis (judges rated page technicality)
 - Search success (experts more successful, based on CTR)
- Some are less obvious:
 - Session features, e.g.,
 - Branchiness of the sessions
 - Number of unique domains
 - Session length (queries, URLs, and time)

Branchiness & Unique Domains

 Session branchiness = 1 + (# revisits to previous pages in the session followed by visit to new page)

Session Feature	Expert		Non-e	expert
	<u>M</u>	<u>SD</u>	<u>M</u>	<u>SD</u>
Branchiness	9.91	12.11	8.54	11.07
# unique domains	8.98	8.13	7.57	6.78

- Expert sessions are more branchy and more diverse than non-experts
- Experts may have developed strategies to explore the space more broadly

Session Length

• Length measured in URLs, queries, time

Session Length Feature	Expert		Non-expert	
	M	<u>SD</u>	M	<u>SD</u>
Page views (inc. result pages)	39.70	47.30	27.68	45.68
Query iterations	13.93	19.14	9.90	15.14
Time (seconds)	1776.45	2129.32	1549.74	1914.86

- Greater investment in tasks by experts than non-experts
- Search targets may be more important to experts making them more likely to spend time and effort

Other Considerations

- Expert/non-expert diffs. hold across all four domains
- *Out of domain* search sessions are similar:

Session Feature	Expert		Non-expert	
	M	<u>SD</u>	M	<u>SD</u>
Branchiness	4.23	7.11	4.28	7.52
Unique domains	4.19	4.13	4.28	3.99
Page views (inc. result pages)	17.89	19.06	18.01	31.44
Query iterations	4.79	8.71	4.32	7.89
Time (seconds)	749.94	1227.51	753.96	1243.07

- Similarities in other features (e.g., queries)
- Observed differences attributable to domain

Using Domain Expertise

Predicting Domain Expertise

- Based on interaction behavior we can estimate a user's level of domain expertise
 - Rather than requiring offline tests
- Search experience can be tailored based on estimation
 - Just like we needed with the cardiologist and the patient
- Three prediction challenges:
 - <u>In-session</u>: After observing \geq 1 action(s) in a session
 - Post-session: After observing a single session
 - User: After observing \geq 1 sessions from same user

Within-Session Prediction

- Predicting domain expertise as the session proceeds
 - Used maximum margin averaged perceptron
 - Trained using features of queries, pages visited, both
 - Five-fold cross validation and ten experimental runs
- e.g., for CS, our best-performing predictor:

Action	Action number					Full
type	1	2	3	4	5	session
All	.616*	.625*	.639**	.651**	.660**	.718**
Queries	.616*	.635**	.651**	.668**	.683**	.710**
Pages	.578	.590*	.608*	.617*	.634**	.661**
	* ** = sig	onificant di	fference fro	m maxima	l margin al	ways neg (566)

Predict after just a few actions; Queries best – less noisy

Improving Search Experience

- Search engine or client-side application could bias results toward websites suitable for expertise level
 - Reinforces behavior rather than encouraging learning
- Help domain non-experts become experts over time
 - Provide non-expert definitions for related expert terms
 - e.g., search for [cancer] includes definition of [malignancy]
 - Help non-experts identify reliable expert sites or use the broader range of information that experts do

Conclusions

- Large-scale, log-based study of Web search behavior of domain experts and non-experts
- Showed that experts/non-experts search differently within their domain of expertise, and similarly otherwise
- Differences/similarities visible across four domains
 - Extending previous lab studies in breadth and scale
- Developed models to predict domain expertise
 - Can do this accurately for a user / post-session / in-session
- Domain expertise information can be used to tailor the search experience and help non-experts become experts