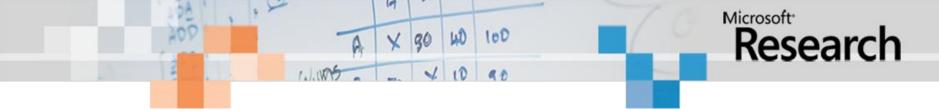


Enhancing Web Search by Promoting Multiple Engine Use

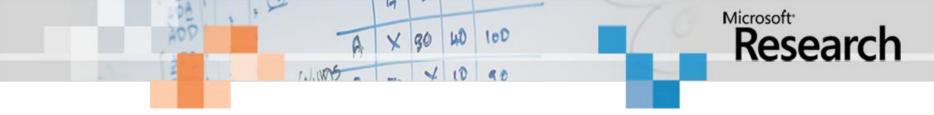
Ryen W. White, Matthew Richardson, Mikhail Bilenko Microsoft Research

Allison Heath Rice University



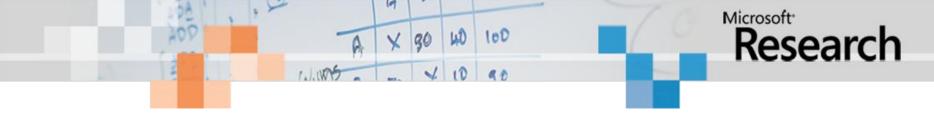
User Loyalty

- Users are generally loyal to one engine
 - Even when engine switching cost is low, and even when they are unhappy with search results
- Change can be inconvenient, users may be unaware of other engines
- A given search engine performs well for some queries and poorly for others
 - Excessive loyalty can hinder search effectiveness



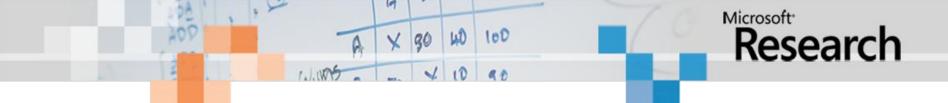
Our Goal

- Support engine switching by recommending the most effective search engine for a given query
 - Users can use their default but have another search engine suggested if it has better results



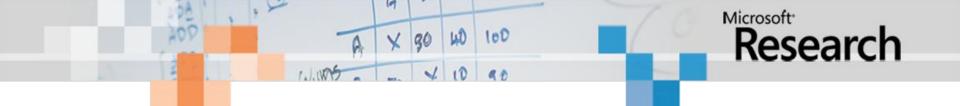
Overview

- Switching support vs. meta-search
- Characterizing current search engine switching
- Supporting additional switching
- Evaluating switching support
- Conclusions and implications

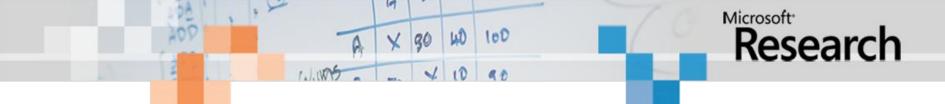


Relationship to Meta-Search

- Meta-search:
 - Merges search results
 - Requires change in default engine (< 1% share)</p>
 - Obliterates benefits from source engine UX investments
 - Hurts source engine brand awareness
- We let users keep their default engine and suggest an alternative engine if we estimate it performs better for the current query



Does switching help users?



A Case for Switching

- Pursued statistical clues on switching behavior
- Aims:
 - Characterize switching
 - Understand if switching would benefit users
- Extracted millions of search sessions from search logs
 - Began with query to Google, Yahoo!, or Live
 - Ended with 30 minutes of user inactivity

Current Switching Behavior

- 6.8% of sessions had switch
- 12% of sessions with > 1 query had switch
- Three classes of switching behavior:
 - Within-session (33.4% users)
 - <u>Between-session</u> (13.2% users) Switch for different sessions (engine task suitability?)
 - Long-term (7.6% users) Defect with no return
- Most users are still loyal to a single engine

A X 30 WO 100 Microsoft^{*} Research

Potential Benefit of Switching

- Quantify benefit of multiple engine use
 - Important as users must benefit from switch
- Studied search sessions from search logs
- Evaluated engine performance with:
 - Normalized Discounted Cumulative Gain (NDCG)
 - Search result click-through rate
- 5K query test set, Goo/Yah/Live query freq. \geq 5

A X 30 40 100 A X 30 40 100 Research

Potential Benefit of Switching (cont.)

- Six-level relevance judgments, e.g.,
 - q =[black diamond carabiners]

URL	Rating
www.bdel.com/gear	Perfect
www.climbing.com/Reviews/biners/Black_Diamond.html	Excellent
www.climbinggear.com/products/listing/item7588.asp	Good
www.rei.com/product/471041	Good
www.nextag.com/BLACK-DIAMOND/	Fair
www.blackdiamondranch.com/	Bad

$$NDCG(i) = N_i \sum_{i} \frac{2^{r(i)} - 1}{\log(1 + i)}$$

We use NDCG at rank 3

Potential Benefit of Switching (cont.)

100

WD

× 20

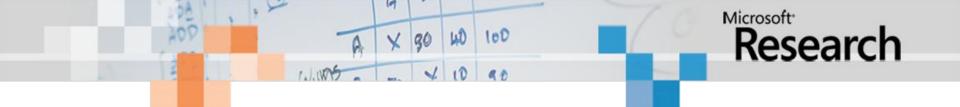
Microsoft^{*}

Research

Number (%) of 5K unique queries that each engine is best

Search engine	Relevance (NDCG)	Result click-through rate
X	952 (19.3%)	2,777 (56.4%)
Υ	1,136 (23.1%)	1,226 (24.9%)
Z	789 (16.1%)	892 (18.1%)
No difference	2,044 (41.5%)	26 (0.6%)

- Computed same stats on all instances of the queries in logs (not just unique queries)
- For around 50% of queries there was a different engine with better relevance or CTR
- Engine choice for each query is important

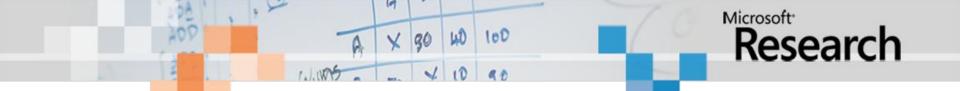


Can we support switching?

A X 30 40 100 A X 30 40 100 A X 10 30

Supporting Switching

- Users may benefit from recommendations
 Find a better engine for their query
- Model comparison as binary classification
 - Closely mirrors the switching decision task
- Actual switch utility depends on cost/benefit
 - Using a quality margin can help with this
 - Quality difference must be \geq margin
- Used a maximum-margin averaged perceptron



Switching as Classification

Query qResult page (origin) RResult page (target) R'

Human-judged result set with *k* ordered URL-judgment pairs

 $R^* = \{ (d_1, s_1), \dots, (d_k, s_k) \}$

Utility of each engine for each query is represented by the NDCG score

 $U(R) = NDCG_{R^*}(R)$ $U(R') = NDCG_{R^*}(R')$

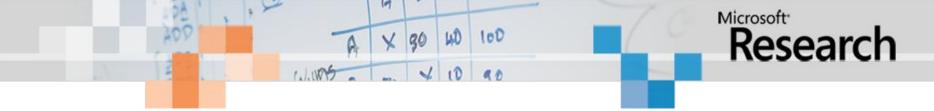
Provide switching support if utility higher by at least some margin...

Dataset of queries $Q = \{(q, R, R', R^*)\}$ yields a set of training instances $D = \{(x, y)\}$ Where each instance x = f(q, R, R') $y = 1 \ iff \ NDCG_{R^*}(R') \ge NDCG_{R^*}(R) + margin$



Classifier Features

- Classifier must recommend engine in real-time
 - Feature generator needs to be fast
 - Derive features from result pages and queryresult associations
- Features:
 - Features from result pages
 - Features from the query
 - Features from the query-result page match



Result Page Features - e.g.,

10 binary features indicating whether there are 1-10 results Number of results

For each title and snippet:

of characters

of words

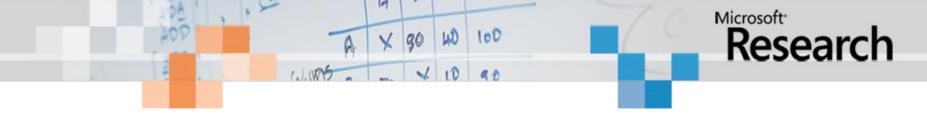
of HTML tags

of "..." (indicate skipped text in snippet)

of ". " (indicates sentence boundary in snippet)

of characters in URL

```
# of characters in domain (e.g., "apple.com")
# of characters in URL path (e.g., "download/quicktime.html")
# of characters in URL parameters (e.g., "?uid=45&p=2")
3 binary features: URL starts with "http", "ftp", or "https"
5 binary features: URL ends with "html", "aspx", "php", "htm"
9 binary features: .com, .net, .org, .edu, .gov, .info, .tv, .biz, .uk
# of "/" in URL path (i.e., depth of the path)
# of "&" in URL path (i.e., number of parameters)
# of "=" in URL path (i.e., number of parameters)
# of matching documents (e.g., "results 1-10 of 2375")
```

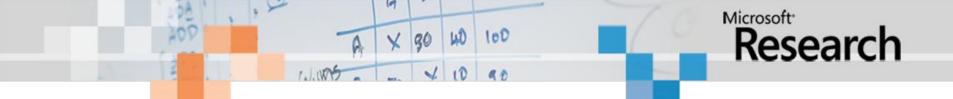


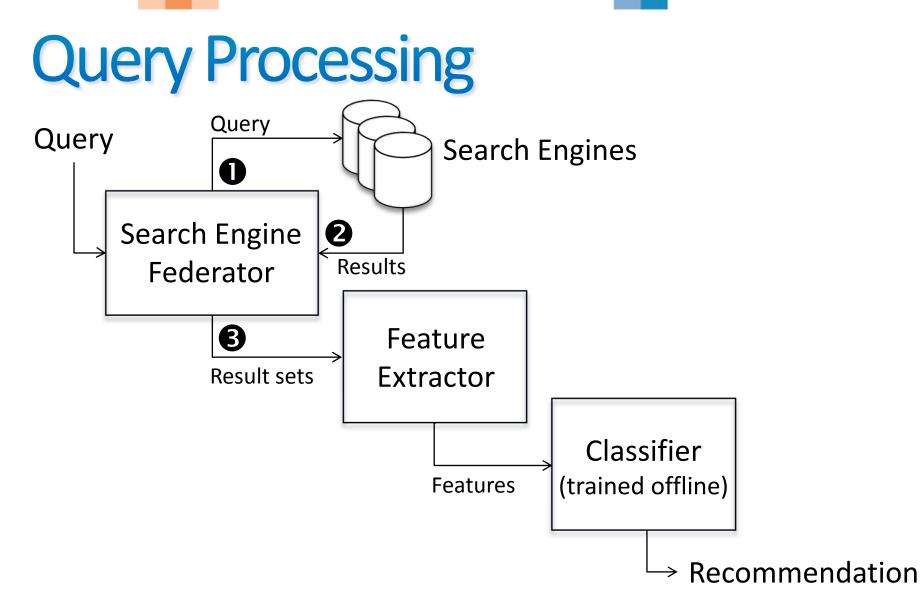
Query Features - e.g.,

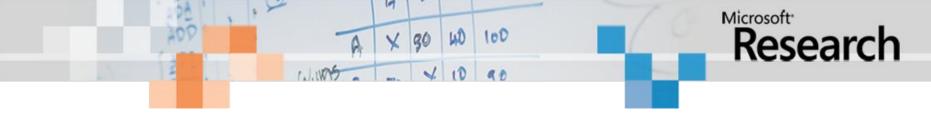
of characters in query
of words in query
of stop words (*a*, *an*, *the*, ...)
8 binary features: Is *ith* query token a stopword
8 features: word lengths (# chars) from smallest to largest
8 features: word lengths ordered from largest to smallest
Average word length

Match Features - e.g.,

For each text type (title, snippet, URL): # of results where the text contains the exact query # of top-1, top-2, top-3 results containing query # of query bigrams in the top-1, top-2, top-3, top-10 results # of domains containing the query in the top-1, top-2, top-3

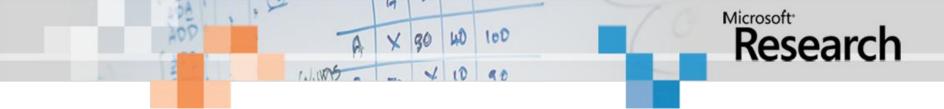






Evaluation

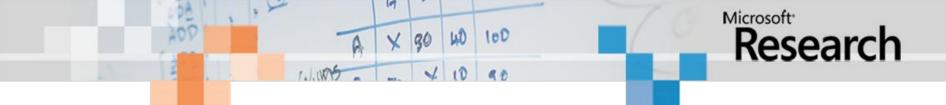
- Evaluate accuracy of switching support to determine its viability
- Task: Accurately predict when one search engine is better than another
- Ground truth:
 - Used labeled corpus of queries randomly sampled from search engine logs
 - Human judges evaluated several dozen top-ranked results returned by Google, Yahoo, and Live Search



Evaluation (cont.)

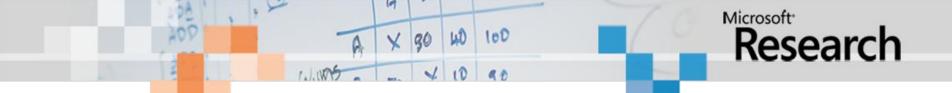
Total number of queries	17,111
Total number of judged pages	4,254,730
Total number of judged pages labeled <i>Fair</i> or higher	1,378,011

 10-fold cross validation, 100 runs, randomized fold assignment

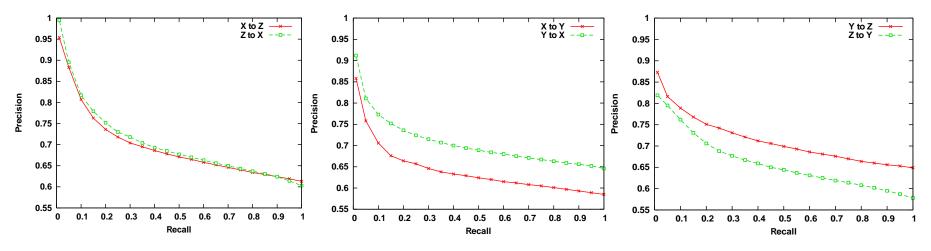


Evaluation (cont.)

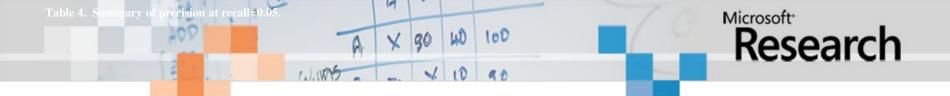
- Trade-offs (recall, interruption, error cost)
- Low confidence threshold = more erroneous recommendations, more frequent
- Preferable to interrupt user less often, with higher accuracy
- Use P-R curves rather than single accuracy point
 - Prec. = # true positive / total # predicted positives
 - Recall = # true positives / total # true positives
- Vary the confidence threshold to get P-R curve



Findings – Precision/Recall



- Precision low (~50%) at high recall levels
 - Low threshold, equally accurate queries are viewed as switch-worthy
- Demonstrates the difficulty of the task



Findings – Precision/Recall

- Goal is to provide additional value over current search engine
 - Provide accurate switching suggestions
 - Infrequent user interruption, every q not needed

 To

 X
 Y
 Z

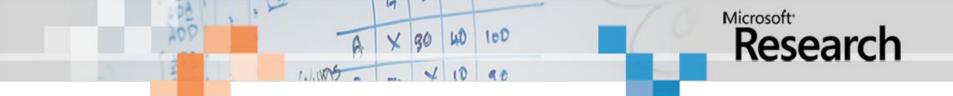
 X
 0.758
 0.883

 Y
 0.811
 0.816

 Z
 0.860
 0.795

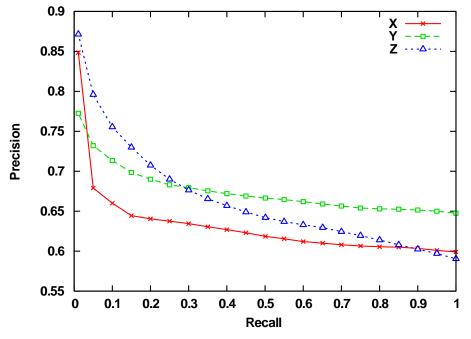
Summary of precision at recall=0.05.

Classifier would fire accurately for 1 query in 20



Findings – Current engine only

 Querying additional engine may add network traffic, undesirable to target engine



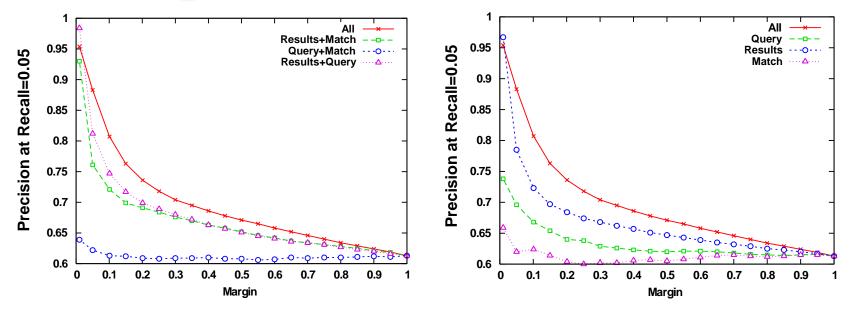
Accuracy lower, but latency may be less

20

100

Microsoft^{*}

Research

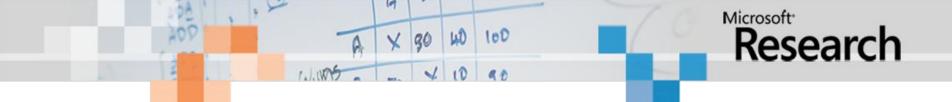


- All sets of features contribute to accuracy
- Features obtained from result pages seems to provide the most benefit

A X 30 40 100 Microsoft Research

Conclusions and Take-away

- Demonstrated potential benefit of switching
- Described a method for automatically determining when to switch engines for a given query
- Evaluated the method and illustrated good performance, especially at usable recall
- Switching support is an important new research area that has potential to really help users



Current and Future Directions

• User studies:

- Task: Switching based on search task rather then just search queries
- Interruption: Understanding user focus of attention and willingness to be interrupted
- **Cognitive burden** of adapting to new engine